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1. Introduction

In the applications of the conjectured AdS/CFT (or gravity/gauge) correspondence [1, 2],

Wilson-loop expectation values have been a focus of much interest. Besides their role as an

important probe for studying phase structures of gauge theories, the Wilson-loop operators

have long been regarded as a clue to possible string picture for gauge theories. With the

advent of the AdS/CFT correspondence, Wilson loops in general can be associated with

the world sheet of strings in the bulk AdS spacetime, in such a way that the boundary

of the string world sheets coincides with the locus of a given Wilson loop located on a

holographic screen at the conformal boundary of the AdS background. Using this picture

initiated in [3], a lot of interesting results have been reported. Most of such results obtained

from the viewpoint of bulk string theory should be regarded as predictions of the AdS/CFT

correspondence, and direct checks of corresponding results on the gauge-theory side have

been difficult because they usually require genuine nonperturbative calculations. In certain

special cases, such as circular (or straight-line) loops [4, 5] which can be constrained by

(super)conformal symmetries, some pieces of nontrivial evidence for the agreement of both

sides have been obtained. For example, it has been shown [6 – 8] that a ladder-graph

approximation gives results which are consistent with predictions from the string picture

in the bulk. It is important to extend such correspondence to other cases.

A first extension to be considered along this line would be various small deformations

of loops from circle, although it is still difficult to perform such calculation on the gauge-

theory side, since we cannot expect that ladder-type approximations continue to be valid for

general small deformations. Another interesting case would be those with various insertions

of local operators along the Wilson line.1 In particular, we can consider insertions of local

operators with large R-charge angular momentum J such as Z(x)J and their cousins,

1Of course we can also understand these local operator insertions as deformations of Wilson loop. See

for example [9].
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“spin-chain operators”. Such operators can preserve covariance under an SL(2, R) part of

conformal transformations.2

In a recent paper [11], a nice discussion of such Wilson loops has been given. On

the bulk side, the authors discussed the spectrum of strings in the large J limit. The

insertions of the local operators are interpreted as nonzero S5-angular momentum density

on the world sheet which is essentially concentrated at the center of the AdS5 background

in their treatment. The special role of the AdS center follows from a familiar discussion of

the BMN limit [12] corresponding to ZJ , while the (doubled) Wilson lines are still located

at the conformal boundary without any deformation. The absence of deformation on the

conformal boundary has been interpreted as signifying the situation where the positions of

operator insertions are sent to infinity with an infinitely large loop.

In the context of bulk string picture, however, it is clearly more natural to consider

string world sheets with nontrivial deformations corresponding to the insertions of local

composite operators at generic finite points on the conformal boundary. We would then

be able to directly evaluate the expectation values for arbitrary circular loops using such

string solutions by following the standard bulk interpretation of Wilson-loop expectation

values. The purpose of the present note is to demonstrate how to achieve such a picture

in a simplest nontrivial setting and to give some remarks relevant to this question, in

hope of providing a basis for further systematic investigations of Wilson-loop expectation

values with more complicated configurations of local operator insertions. In particular, we

will point out that a ‘tunneling’ picture which has been developed in [13, 14] in order to

reconcile the BMN limit with the spacetime holographic picture is crucial for this purpose.

This approach has led to a natural prescription [15] for a holographic correspondence

between OPE coefficients of the conformal gauge theory to a particular 3-point vertex

of string-field theory. Establishing such correspondence beyond mere comparison of the

spectrum has been difficult in the usual approach which does not take into account the

tunneling picture.

2. Tunneling picture and bulk string solutions

The Wilson-loop operator we consider is

W [C; ~x+, ~x−] = Tr
[

P exp
(

∮

C
ds[iAµ(~x(s))ẋµ +

√

(~̇x)2φi(~x(s))θi]
)

Z(~x(s1))
JZ(~x(s2))

J
]

(2.1)

where ~x+ = ~x(s1), ~x− = ~x(s2) are the positions of insertions and the contour C is assumed

to be a circle. We denote by ~x = {xµ} the 4-dimensional base spacetime coordinates.

Other notations are standard. For simplicity, we assume that the direction of the unit

vector θi along the S5 is fixed to be the 4-th direction, φiθi = φ4 and that the direction

of the angular momentum is in the 5-6 plane, Z = (φ5 + iφ6)/
√

2. If we wish to study

the behavior of the vacuum expectation value of this operator from the viewpoint of string

theory in the bulk, the first task is to obtain an appropriate classical string configuration

2For other cases of Wilson-loop correlators involving large-J local operators, see [10].
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such that, as we approach the conformal boundary, it reduces to the circle C with the

momentum density along C being concentrated at the positions of insertions. We choose

the Polyakov-type action in the conformal gauge for world-sheet parametrization. Also for

the target spacetime, we use the Poincaré coordinates for the AdS part with the metric

ds2 = R2
[dz2 + d~x2

z2
+ cos2 θ(dψ)2 + (dθ)2 + sin2 θdΩ̃2

3

]

. (2.2)

For the S5 part, the 4-th direction pointing toward the north pole corresponds to θ = π/2

and the angle in the 5-6 plane at θ = 0 is ψ. The angular momentum along ψ is then

J =
R2

2πα′

∫

dσ cos2 θ(τ, σ)ψ̇(τ, σ). (2.3)

Assume that the world-sheet time coordinate τ is chosen such that ψ(τ, σ) = τ . The

equation of motion then requires that θ is τ -independent. The density of the angular

momentum with respect to σ cannot exceed a finite constant R2/2πα′. In order for the R-

charge angular momentum to be localized with respect to the target spacetime, the range

of σ where cos θ ∼ 1, ~x ′ ∼ 0, z′ ∼ 0 are satisfied must be infinitely large. For the S5 part,

the solution satisfying the criterion is easily found as in [11] to be

(cos θ, ψ) = (tanh σ, τ) (2.4)

which also satisfies the Virasoro constraint in the form (ψ̇)2 cos2 θ +(θ′)2 = 1, ψ̇ψ′ cos2 θ +

θ̇θ′ = 0. The region where the R-charge momentum is localized is where σ → ∞. Thus,

in the limit of large σ, the AdS coordinates must also be constant with respect to σ at

least when we consider the near-boundary region z ∼ 0. Hence the Virasoro-Hamiltonian

constraint in this region reduces to

ż2 + ~̇x2

z2
+ 1 = 0. (2.5)

This shows that for the existence of real solution, we have to require at least that ~̇x

is timelike. The equation of motion ∂τ

(

∂τ ~x
z2

)

− ∂σ

(

∂σ~x
z2

)

= 0 for ~x reduces, under the

same condition, to ~̇x/z2 = constant. We choose the scale of this integration constant by

introducing a parameter ` such that ~̇x2/z4 = −`−2. However, we then have always z2 ≥ `2

since (2.5) is now equivalent to `2ż2 = z2(z2 − `2). Since we are seeking for a string

configuration of which the deformation corresponding to local operator insertions reaches

the conformal boundary z = 0, this is not acceptable. Hence, there exists no desired

classical solution which reaches the conformal boundary even if we assume that the loop

C extends in the time-like direction. The situation [13, 14] is the same as in the usual

formulation of the BMN limit for which it is not possible to directly apply the GKPW

prescription for the same reason as we encounter here that the pp-wave trajectory with

Lorentzian metric does not reach the conformal boundary. Hence, if we remain in the

Lorentzian approaches such as in [11], we cannot achieve the desired picture.
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The resolution of this puzzle is quite simple. We would like to refer the reader to [13,

14]3 for detailed discussions on this matter. In essence, we have to take into account

that, from the viewpoint of semi-classical approximation, the holographic correspondence

between bulk and conformal boundary is actually a tunneling phenomenon as could be

inferred from the beginning of AdS/CFT correspondence embodied in the famous GKPW

relation. Namely, we have to study the tunneling region z2(z2 − `2) ≤ 0. As is familiar

in elementary quantum mechanics, we perform the Wick rotation τ → −iτ for the world-

sheet time. We are then forced to consider Euclideanized AdS (EAdS) by assuming that

~x is now a 4-vector with Euclidean signature, in order to keep the relative sign between

z4 and z2`2 against the Wick rotation of the world-sheet time coordinate. Of course, if we

started from a loop extending to space-like directions, only the Wick rotation with respect

to τ would have been sufficient. However, when we consider the light-cone quantization

of strings around the classical solution, the Wick rotation with respect to the target time

direction would be very important irrespectively of the directions of the loop.

The Hamiltonian constraint now reduces to `2ż2 = z2(`2 − z2), and the solution of the

equation of motion is obtained as

z = `/ cosh τ, x4 = ` tanh τ (2.6)

which is nothing but a semi-circle z2 + x2
4 = `2 in the two-dimensional section (z, x4)

and reaches the conformal boundary as τ → ±∞. We have chosen a trajectory lying in

the 4-th direction of the EAdS spacetime. Note that the integration constant ` gives the

distance |~x+ − ~x−| = 2` between the two local operator insertions on the boundary. It

should also be noted that as a consequence of the above Wick rotation we have to rotate

the angle coordinate along the 5-6 plane simultaneously as ψ → −iψ to keep the value of

R-charge angular momentum J intact. Thus the 10-dimensional spacetime as a whole is

of Lorentzian signature effectively. This is why we can still perform a Penrose-type limit

in the tunneling picture. Eq. (2.6) is the same geodesic trajectory as the one used for

discussing the correlators of the BMN operators and the associated ‘holographic’ string

field theory [13, 15].

It is now evident that in order to have the world-sheet configuration corresponding to

our Wilson-loop operator with local-operator insertions we have to rely on the tunneling

picture. As in the case [13] of the BMN limit, the world-sheet time variable τ in (2.6)

can be identified with the Euclidean time parameter τ of the global coordinates for EAdS

background, R2[cosh2 ρ(dτ)2+(dρ)2+sinh2 ρdΩ2
3] in terms of which the trajectory is nothing

but the geodesic at ρ = 0 which does reach the boundary in the limit of large |τ |. The

full string world-sheet will be described as a trajectory of an open string propagating from

boundary to boundary such that the position of localized R-charge momentum traverses

along this geodesic of the EAdS background. The desired solution can be easily obtained

by going to the global EAdS metric and then return again to the Poincaré metric. In the

3In the present note, we give only a somewhat sketchy explanation for the necessity of the tunneling

picture to avoid too much repetition. For an up-to-date review including other references, we strongly

recommend the reader to consult the second ref. in [14] which also contains a brief discussion on the

solution (2.7) discussed below.
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case of straight-line Wilson loop, the solution in the global EAdS metric is in fact related

to the solution discussed in [11] by our Wick rotation.

Choosing the circle C on the boundary in the x3-x4 plane and the points of the inser-

tions on the x4 axis, we find that the full world sheet is described by two patches designated

by suffix ±, given as

(z(τ, σ), x3(τ, σ), x4(τ, σ))±

= `(
sinhσ

cosh σ cosh τ ± α
,±

√
1 − α2

cosh σ cosh τ ± α
,

cosh σ sinh τ

cosh σ cosh τ ± α
). (2.7)

In addition to the integration variable ` appeared already to describe the distance of inser-

tion points, we introduced another parameter α which gives the radius, r = `/
√

1 − α2, of

the circle C for a given `. As a matter of course, solutions with circles of different sizes on

the conformal boundary are related by conformal transformations in the bulk EAdS back-

ground. For our later purpose, it is most convenient to keep these two integration constants

explicitly. The ranges of the world-sheet coordinates are 0 ≤ σ ≤ ∞ and −∞ ≤ τ ≤ ∞
for both patches. The trajectory (2.6), along which the R-charge angular momentum is

concentrated and the two patches are sewn together, corresponds to the limit σ → ∞ in

conformity with the above discussion of localized angular momentum.

On the other hand, the limit σ → 0 gives

(z(τ, 0), x3(τ, 0), x4(τ, 0))± = `(0,±
√

1 − α2

cosh τ ± α
,

sinh τ

cosh τ ± α
) (2.8)

which corresponds to the circle C on the boundary whose center is located on the x3 axis.

The points of local operator insertions are ~x± = `(0, 0,±1), as we obtain by taking the

limits τ → ±∞, respectively, in either of these expressions (σ = 0 or σ → ∞). For the

S5 part, we can adopt the same form as (2.4) with the understanding of a double Wick

rotation.

Figures 1-3 exhibit the equal-τ and-σ lines on the full world sheet with respect to

the bulk target space. In particular, in the case of the straight-line loop (α = 1, figure

3), the two patches with signs ± correspond to the regions z2 + x2
4 ≤ `2 or z2 + x2

4 ≥
`2, respectively, and are related to each other by an inversion transformation (z, x4) →
`2(z/(z2 + x2

4), x4/(z
2 + x2

4)). If we wished and did not insist on the conformal gauge, we

could have represented the above solution using a single patch. In fact, the solution with

α = 1 can equivalently be expressed using complex coordinates both for world sheet and

target space as

τ + iθ̃ = ln i
x4 + ` + iz

x4 − ` + iz
, (2.9)

where θ̃ is related to σ by tanh σ = cos θ̃. The two patches correspond to −π/2 ≤ θ̃ ≤
0 and 0 ≤ θ̃ ≤ π/2. The solution with other values of α can of course be obtained

by conformal transformation in the target space. This form is very suggestive, since it

strikingly resembles to similar expressions in the light-cone string theory in flat spacetime.

It might be worthwhile to elaborate this form further in a direction, say, of extending it to

cases with multi-point insertions of local operators. For the purpose of the present note,

however, we will use the above two-patch representation.
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z

x3

x4

x3

Figure 1: The equal τ -σ curves on the full world sheet for the case of the smallest (with fixed `)

loop α = 0.

z

x3

x4

x3

Figure 2: The equal τ -σ curves on the full world sheet for a generic loop 0 < α < 1.

The total R-charge angular momentum carried by this solution is

J =
R2

πα′

∫ ∞

0
dσ tanh2 σ, (2.10)

which is infinite. Note that elimination of factor 2 in the prefactor before the integral

is due to the presence of two patches. Thus, we have to actually introduce a cutoff for

σ ≤ σΛ with a sufficiently large σΛ À 1, so that the angular momentum is now given as

J ∼ R2(σΛ − 1)/πα′ + O(e−2σΛ). With regard to the dependence on J , our treatment

will be exact up to nonperturbative exponential corrections O(e−2πα′J/R2

) which can be

ignored in the power series expansion in 1/J within our semi-classical approximation.
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z

x3

x4

x3

Figure 3: The equal τ -σ curves on the full world sheet for the straight-line loop α = 1.

3. Computing the Wilson-loop expectation value

Our next task is to evaluate the value of an appropriate classical string action functional

for this configuration. We have adopted the Polyakov-type action for the bulk world sheet

and are interpreting the process as a scattering event of an open string on the world sheet

from τ = −∞ to τ = ∞ for the given conserved R-charge angular momentum J . Thus we

should consider the Routhian after a Legendre transformation with respect to ψ,

Sbulk =
R2

4πα′

∫

dτdσ
[ 1

z2

(

(ż)2 + (z′)2 + (~̇x)2 + (~x′)2
)

+ (θ̇)2 + (θ′)2

− cos2 θ
(

(ψ̇)2 + (ψ′)2
)

− 4πα′

R2
Πψψ̇

]

(3.1)

with Πψ = −R2ψ̇ cos2 θ/2πα′ being the ψ-momentum. The minus sign of the ψ-part comes

from the Wick rotation. Since the world-sheet has a boundary, the action functional is

subject to ambiguity of boundary terms. We follow the argument of ref. [5] which demands

that the total action should be a functional of momentum in the radial direction of the

AdS part, with respect to the dependence on the boundary. This requirement does not yet

uniquely fix the choice of the boundary term, since they are not in general invariant under

canonical transformations. One natural criterion for the choice of the variable is that the

momentum should behave in a well-defined manner as we approach the boundary. This

criterion is not satisfied if we choose z, since the radial momentum Πz = R2ż/2πα′z2 for

the above solution is not well-defined at z = 0, corresponding to σ = 0. Instead of z, we

choose u = 1/z since Πu = R2u̇/2πα′u2 behaves well there. These two different choices

actually lead to boundary contributions with opposite signs. Thus the boundary action we

adopt is

Sboundary =
R2

2πα′

∮

boundary

(

dτ
u′

u
− dσ

u̇

u

)

. (3.2)

– 7 –



J
H
E
P
1
2
(
2
0
0
6
)
0
6
0

Then the expectation value of the Wilson operator (2.1) is essentially e−Sbulk−Sboundary up

to a possible normalization factor, which should not depend on the spacetime configuration

of the loop C and the positions ~x± of insertions provided that the string action captures

the gauge-theory dynamics of Wilson loops appropriately.

3.1 Regularization I

To carry out a well-defined evaluation of this action integral, we have to introduce a definite

regularization scheme which controls possible infinities arising at least near the boundary

region z ∼ 0 corresponding to small σ and/or large τ . The simplest conceivable prescription

is to introduce two cutoff parameters σ0 and ε on the world sheet such that

σ ≥ σ0, cosh τ ≤ `

ε
(3.3)

and take the limits σ0 → 0, ε → 0 afterward. The second condition amounts to setting a

lower bound for the radial coordinate z in the target space at the points of insertions for

sufficiently large σ, limσΛ→∞ z(σΛ, τ) ≥ ε. In the case of local operators, this is a standard

short-distance cutoff in applying the GKPW relation. We assume that both the bulk and

boundary actions should be computed for the same finite rectangular region defined by

these cutoff conditions (3.3). For the cutoff σΛ associated with large R-charge angular

momentum, it is not necessary to introduce any boundary term.

Using the Virasoro condition

1

z2
(ż2 − (z′)2 + ~̇x2 − (~x′)2) = 1 = −θ̇2 + (θ′)2 + cos2 θ((ψ̇)2 − (ψ′)2) (3.4)

satisfied by the above solution and also a part of the equations of motion, the bulk action

is evaluated to be

Sbulk =
R2

πα′

∫ τ(ε)

−τ(ε)
dτ

∫ σΛ

σ0

dσ
ż2 + ~̇x2

z2
=

2R2

πα′

∫ τ(ε)

0
dτ(σ − coth σ)

∣

∣

∣

σΛ

σ0

, (3.5)

with τ(ε) ∼ log(2`/ε) being the upper bound for |τ | determined by (3.3). Because of the

conformal isometry, the bulk action is independent of the radius r of the circle, except for

possible implicit dependence through the cutoff prescription. The boundary action is equal

to

Sboundary =
R2

πα′

[

∫ τ(ε)

0
dτ

(

− 2 coth σ0 +
sinhσ0 cosh τ

cosh σ0 cosh τ + α
+

sinhσ0 cosh τ

cosh σ0 cosh τ − α

)

−
∫ σΛ

σ0

dσ
( cosh σ sinh τ(ε)

cosh σ cosh τ(ε) + α
+

cosh σ sinh τ(ε)

cosh σ cosh τ(ε) − α

)]

. (3.6)

The contribution of the first term −2 coth σ0 in the first brace just cancels the same but

opposite contribution from the second term at σ = σ0 → 0 of the bulk action. Therefore,

the total action is given, in the limit where the cutoff parameters must be finally set, by

Stotal ≡ Sbulk + Sboundary = 2J log
2`

ε
− 2J − 2R2

πα′

– 8 –
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− R2

πα′
σ0

2α
√

cosh2 σ0 − α2

(

arctan
cosh σ0 − α

√

cosh2 σ0 − α2
− arctan

cosh σ0 + α
√

cosh2 σ0 − α2

)

. (3.7)

Note that we have still kept the small cutoff parameter σ0 ¿ 1 here, since the last term

has a rather subtle behavior depending on the parameter α. When α < 1, this reduces in

the limit σ0 → 0 to

Stotal

∣

∣

∣

α<1
= 2J log

2`

ε
− 2J − 2R2

πα′
. (3.8)

The case α = 1 of the straight-line Wilson loop, however, is special: We obtain

Stotal

∣

∣

∣

α=1
= 2J log

2`

ε
+

R2

α′
− 2J − 2R2

πα′
. (3.9)

The additional finite piece R2/α′ in this result comes from the (−) patch corresponding to

the second term in the brace of (3.7) which is singular when α = 1.

Let us now discuss the meaning of these results. The dependence dStotal/d(2`) = 2J/2`

on the distance 2` of the inserted local fields ZJ and Z
J

shows the correct scaling behavior

as it should be by the conformal covariance property [11] of Wilson-loop operators of the

type being treated here. On the other hand, the dependence on the loop-scale parameter

α takes the form

Stotal

∣

∣

∣

α=1
− Stotal

∣

∣

∣

α<1
=

R2

α′
. (3.10)

This behavior is the same as in the case without local-operator insertions.

On the gauge-theory side, as argued in [7] for the case of ordinary circular Wilson loops

without local operator insertions, the relation (3.10) can be interpreted as arising from an

anomaly associated with the inversion conformal transformation between a finite circle and

a straight line. Their argument seems go through to the case with local operator insertions.

This is consistent with the ladder-graph approximation in the limit R4/(α′)2 À 1, since we

can easily check that the contribution of ladder-rainbow graphs which take into account

a planar set of the propagators of scalar (φ4) and gauge fields directly connecting points

along the loop is nonzero only for the case of finite circle α < 1 and is proportional, apart

from a power-behaving prefactor, to

I1(
√

g2N
s

2π
)I1(

√

g2N
2π − s

2π
) → e

√
g2N , (3.11)

using the same notation (R4/(α′)2 = g2N À 1) as in the reference [8]. The new parameter

s (0 < s < 2π) denotes the coordinate length between two local operator insertions mea-

sured along the Wilson loop of total length 2π. Thus the ratio of the case of finite circles to

that of straight line agrees with (3.10). The ladder approximation is also consistent with

the dependence on `. The validity of such an approximation has not been justified from

first principle, but is not unreasonable in view of remaining supersymmetry for this type

of deformation [16]. For a discussion related to supersymmetry of the Wilson loops of our

type, we refer the reader to [11, 17].

The dependence on the short-distance cutoff parameter ε must be removed by wave-

function renormalization of our Wilson loop operator as usual. On the other hand, it

– 9 –
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σ

σΛ

|τ |

C
+
ε : |τ | = τ

+
ε (σ) ( or σ = σ

+
ε (|τ |))

0

Figure 4: The boundary contours σ = σΛ and C+
ε for the (+)-patch. The functions τ+

ε (σ) and

σ+
ε

(τ) are determined by (3.13) with τ > 0.

is not entirely clear whether we can put any universal meaning on the remaining finite

contribution which does not depend on loop-configuration parameters ` and α, but does

depend on the coupling constant. For the purpose of clarifying this problem, it is useful to

study a different regularization scheme.

3.2 Regularization II

From the target-space point of view, the infinities of Sbulk arise in two ways: One is from

singular behavior of the Poincaré metric near the conformal boundary, and the other is

from the infinite extension of the world sheet in the direction of x4 for α = 1. Instead

of cutoffs in terms of the world-sheet coordinates, it is then equally natural to regularize

these infinities using the target-space coordinates as

(

z(τ, σ)
)

±
≥ ε,

∣

∣

(

x4(τ, σ)
)

−

∣

∣ ≤ L. (3.12)

The second condition is meaningful only in the case of α = 1. The similar condition for

(x4)+ is always satisfied for L > `. The boundaries of the domain of integration with

respect to the (τ, σ) coordinates are given by the following curves

(+)-patch C+
ε : ` sinhσ = ε

(

cosh σ cosh τ + α
)

(α ≤ 1), (3.13)

(−)-patch

{

C−
ε : ` sinhσ = ε

(

cosh σ cosh τ − α
)

(α ≤ 1),

C−
L : ` cosh σ| sinh τ | = L

(

cosh σ cosh τ − 1
)

(α = 1).
(3.14)

Because of these boundary curves with complicated τ -σ dependence, integrals become more

cumbersome than the previous regularization. The curves with α = 1 are illustrated in

figure 4 and 5. In the case of the (+)-patch, curves with α < 1 and α = 1 are essentially

the same. As for the case of (−)-patch, the curve C−
L in figure 5 does not exist for α < 1.

Remember that as before we have another cutoff σΛ related to the angular momentum J .

For definiteness, we take the limit ε → 0 and L → ∞ for fixed large J . It is not difficult to

check that the opposite order of the limits gives the same final result.
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σ

σΛ

|τ |

C
−
ε : |τ | = τ

−
ε (σ) ( or σ = σ

−
ε (|τ |))

0

C
−
L

: σ = σ
−
L

(|τ |)

(τ∗, σ∗)

Figure 5: The boundary contours σ = σΛ, C−

ε and C−

L
for the (−)-patch with α = 1. The

functions τ−

ε
(σ) and σ−

ε
(τ) are determined by the first equation of (3.14) and σ+

L
(τ) is determined

by the second equation of (3.14) with τ > 0.

For α < 1, contributions from two patches are essentially the same. We give brief

summary only for the (+)-patch. The bulk contribution is

S+
bulk =

R2

2πα′

∫ τ+
ε (σΛ)

−τ+
ε (σΛ)

dτ

∫ σΛ

σ+
ε (τ)

dσ
ż2 + ~̇x2

z2
=

R2

πα′

∫ τ+
ε (σΛ)

0
dτ (σ − coth σ)

∣

∣

∣

σΛ

σ+
ε (τ)

, (3.15)

with τ+
ε (σ) and σ+

ε (τ) being determined by (3.13). The boundary contribution is

S+
boundary =

R2

πα′

[

∫ τ+
ε (σΛ)

0
dτ

(

− coth σ+
ε (τ) +

sinhσ+
ε (τ) cosh τ

cosh σ+
ε (τ) cosh τ + α

)

−
∫ σΛ

σ+
ε (0)

dσ
( cosh σ sinh τ+

ε (σ)

cosh σ cosh τ+
ε (σ) + α

)]

. (3.16)

The first term, − coth σ+
ε (τ), in the τ -integral cancels the same but opposite term in (3.15)

as before, and the remaining τ -integral gives R2/πα′. The σ-integral in the second line of

(3.16) can be rewritten as

R2

πα′

[

− ε

`

[

σ coth σ sinh τ+
ε (σ)

]σΛ

σ+
ε (0)

+
ε

`

∫ σΛ

σ+
ε (0)

dσ σ
d

dσ

(

coth σ sinh τ+
ε (σ)

)

]

, (3.17)

of which the first term gives −(R2/πα′)σΛ and the second term goes to zero in the limit

ε → 0. Thus the final result is

[

S+
bulk + S+

boundary

]

α<1
= J log

2`

ε
− J − R2

πα′

∫ τ+
ε (σΛ)

0
dτ σ+

ε (τ). (3.18)

Adding the contribution from the other patch, we reproduce the same result as in our

first regularization scheme, except for the last term; we will later estimate the sum of the

last term in (3.18) and the similar one from the (−)-patch to be a J-independent finite

constant.

Next we turn to the case α = 1. In contrast to the case α < 1, the second cutoff in

(3.12) plays an important role. Only the evaluation of the (−)-patch needs modification.
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The bulk and the boundary contributions are

S−
bulk =

R2

πα′

[

∫ τ∗

0
dτ (σ − coth σ)

∣

∣

∣

σΛ

σ−

L
(τ)

+

∫ τ−

ε (σΛ)

τ∗

dτ (σ − coth σ)
∣

∣

∣

σΛ

σ−

ε (τ)

]

, (3.19)

S−
boundary =

R2

πα′

[

∫

C−

L

(

dτ
u′

u
− dσ

u̇

u

)

+

∫

C−

ε

(

dτ
u′

u
− dσ

u̇

u

)]

. (3.20)

Here, τ−
ε (σ) and σ−

ε (τ) are determined by the first equation in (3.14) and σ−
L (τ) is deter-

mined by the second equation in (3.14). The point (τ∗, σ∗) is where two contours C−
ε and

C−
L with τ > 0 meet each other, as explained in figure 5, and defines the end-point of the

boundary integrals in (3.20). A little inspection shows that the difference from the case

α < 1 arises only from the τ -integral along the curve C−
L in (3.20), which is rewritten as

R2

πα′

[

∫ τ∗

0
dτ

(

− coth σ−
L (τ)

)

+
1

`

∫ sinh τ∗

0
dx

1

x

√

−(L2 + `2)x2 + 2L`
√

1 + x2x
]

. (3.21)

Here in the second term, we have used the second equation of (3.14) and changed the

variable according to x = sinh τ . The first term again cancels the corresponding term in

(3.19), and the second term can be evaluated in the limit L → ∞ and ε → 0 to give R2/α′.

Summing all the contributions, we obtain

[

S−
bulk + S−

boundary

]

α=1
= J log

2`

ε
− J +

R2

α′
− R2

πα′

∫ τ−

ε (σΛ)

0
dτσ−

ε (τ). (3.22)

Adding the result for the other patch which is equal to (3.18), we reproduce the same

form as in the previous prescription, again up to the last term. In particular, we have

reproduced the special finite contribution R2/α′ as before. In the limit ε → 0, remaining

τ -integrals in (3.18) and (3.22), whose expressions are valid for any α, can be combined

into the following form, apart from the prefactor R2/πα′,

− lim
ε→0

∫ arccosh `
ε

0
dτ log

(

` + ε cosh τ

` − ε cosh τ

)

,

which dose not depend on α. By expanding the integrand with respect to ε and performing

the τ -integral order by order, this is evaluated to be −π2/4.

4. Conclusion

To summarize, both the behaviors with respect to ` and to α do not depend on regulariza-

tions as expected. However, the finite term which is independent of these scale parameters

and of J actually depends on regularizations. We can conclude that the finite normalization

factor, though it depends on the coupling constant, cannot be regarded to be universal.

This is not at all strange, but it is desirable to find interpretation for this part from the

side of the Yang-Mills theory. That would require understanding the nature of nonper-

turbative contributions other than those in simple ladder-type approximations. It would

also be worthwhile to consider possibility of various Ward-like identities for the purpose of

eliminating ambiguities of regularization.
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Our computations in this note have treated only a particular case of Wilson loops

with the insertions of local scalar operators. Extension to more general spin-chain type

operators would be an interesting exercise as in [18]. Extension to the case with the

insertions of three or more local operators must also be a next important problem. Our

string configurations work for sufficiently large R-charge. The case with small but nonzero

R-charge must perhaps be treated by string configurations of different types, in which

the density of R-charge angular momentum becomes more diffuse as we go inside the

string world sheet, and hence appropriate solutions for such situation should have more

complicated time dependence. It would also be interesting to study whether we can extend

the present analysis to cases with insertions of operators without R-charge, such as field

strengths and higher covariant derivatives.
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